NATIONAL EDUCATION POLICY-2020

Common Minimum Syllabus for all
Uttarakhand State Universities and Colleges for
First Three Years of Higher Education

PROPOSED STRUCTURE OF UG - MATHEMATICS
SYLLABUS

2021

Curriculum Design Committee, Uttarakhand

Sr.No.	Name \& Designation	
$\mathbf{1 .}$	Prof. N.K. Joshi Vice-Chancellor , Kumaun University Nainital	Chairman
2.	Prof. O.P.S. Negi Vice-Chancellor, Uttarakhand Open University	Member
3.	Prof. P. P. Dhyani Vice-Chancellor, Sri Dev Suman Uttarakhand University	Member
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member

SYLLABUS EXPERT COMMITTEE

S. No.	Name	Signature
1	Prof. Anita Tomar, HoD, Department of Mathematics, Sri Dev Suman Campus, Rishikesh	Prof. Jaya Upreti, HoD, Department of Mathematics, S. S. J. Campus, Almora
2	Dr. Shankar Kumar, Assistant Professor, Department of Mathematics, Govt. P. G. College, Ranikhet.	
3	Dr. Sundar Kumar Arya, Assistant Professor, Department of Mathematics, Govt. P. G. College, Pithoragarh.	
4		

SYLLABUS PREPRATION COMMITTEE

S. No.	Name	Signature
1	Prof. Jaya Upreti, HoD, Department of Mathematics, S. S. J. Campus, Almora	Prof. Anita Tomar, HoD, Department of Mathematics, Sri Dev Suman Campus, Rishikesh
3	Dr. Shankar Kumar, Assistant Professor, Department of Mathematics, Govt. P. G. College, Ranikhet.	Dr. Sundar Kumar Arya, Assistant Professor, Department of Mathematics, Govt. P. G. College, Pithoragarh.
4	Dr. Anita Kumari, Assistant professor, Department of Mathematics, D. S. B. Campus, Almora.	
5		

SEMESTER WISE TITLES OF THE PAPER IN UG MATHEMATICS COURSE					
YEAR	SEMESTER	COURSE CODE	PAPER TITLE	THEORY/ PRACTICAL	CREDIT
CERTIFICATE COURSE IN BASIC MATHEMATICS					
$\begin{aligned} & \text { FIRST } \\ & \text { YEAR } \end{aligned}$	I	UGMAT101T	Matrices, Trigonometry and Differential Calculus	THEORY	4
		UGMAT102P	Practical	PRACTICAL	2
	II	UGMAT201T	Integral Calculus and Vector Analysis	THEORY	6
DIPLOMA IN MATHEMATICS					
SECOND YEAR	III	UGMAT301T	Group Theory and Analytical Geometry	THEORY	6
	IV	UGMAT401T	Ordinary Differential Equations and Ring Theory	THEORY	6
DEGREE IN MATHEMATICS					
$\begin{array}{\|l\|} \text { THIRD } \\ \text { YEAR } \end{array}$		UGMAT501T	Real Analysis, Functions of several variables and Partial Differential Equations	THEORY	5
	V	UGMAT502T	Any one of the following- (i) Mathematical Methods and Graph Theory (ii) Number Theory and Relativity (iii) Numerical Analysis and Operations Research	THEORY	5
	VI	UGMAT601T	Complex Analysis and Mechanics	THEORY	5
		UGMAT602T	Linear Algebra and Metric Spaces	THEORY	5

PROPOSED STRUCTURE OF UG MATHEMATICS SYLLABUS AS PER NEP 2020 GUIDELINES GENERAL
OVERVIEW

B.A./B.Sc.										
PROGRAMME		SEMESTER (15Weeks)	PAPER		PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	$\begin{gathered} \text { UNIT } \\ \text { (Periods Per } \\ \text { Semester) } \end{gathered}$	PREREQUISITE	elective (For Other Faculty)
	$\begin{aligned} & \frac{\pi}{4} \\ & \frac{1}{x} \\ & \sqrt[n]{x} \end{aligned}$		Paper-1	4	4	$4 \times 15=60$	Matrices, Trigonometry and Differential Calculus Part A: Matrices Part B: Trigonometry Part C: Differential Calculus	Part A Unit I (8) Unit II (7) Unit III (5) Part B Unit IV (6) Unit V (6) Part C Unit VI (7) Unit VII (6) Unit VIII (8) Unit IX (7)	Mathematics in $12^{\text {th }}$	Engg. and Tech. (UG), Chemistry/ Biochemistry/ Life Sciences (UG), Economics (UG/PG), Commerce (UG), BBA/ BCA, B.Sc. (C.S.)
			Paper-2 Practical	2	2 Lab Periods (2 Hours Each)	$2 \times 2 \times 15=60$	Practical (Practicals to be done using Mathematica/MATLA B / Maple /Scilab /Maxima etc.)		Mathematics in 12^{th}	Engg. and Tech. (UG), B.Sc. (C.S.)
			Paper-1	6	6	$15 \times 6=90$	Integral Calculus and Vector Analysis Part A: Integral Calculus Part B: Vector Analysis	Part A Unit I (12) Unit II (11) Unit III (12) Unit IV (11) Part B Unit V (11) Unit VI (12) Unit VII (11) Unit VIII (10)	Mathematics in $12^{\text {th }}$	Engg. and Tech. (UG), B.Sc. (C.S.)

B.A./B.SC. I										
PROGRAMME	$\underset{y}{x}$	$\left.\begin{array}{\|r\|} \hline \text { SEMESTER } \\ (15 \text { Weeks }) \end{array} \right\rvert\,$	PAPER	E 药	PERIODS Per Week	PERIODS (HOURS) Per Semester	Paper title	UNIT (Periods Per Semester)	PREREQUISITE	elective (For Other Faculty)
			Paper-1	6	6	$6 \times 15=90$	Group Theory and Analytical Geometry Part A: Group Theory Part B: Analytical Geometry	Part A Unit I (12) Unit II (20) Unit III (13) Part B Unit IV (11) Unit V (12) Unit VI (12) Unit VII (10)	Certificate Course in Basic Mathematics	Engg. and Tech. (UG), B.Sc. (C.S.)
			Paper-1	6	6	$6 \times 15=90$	Ordinary Differential Equations and Ring Theory Part A: Ordinary Differential Equations Part B: Ring Theory	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (11) Unit VI (10) Unit VII (12) Unit VIII (12)	Certificate Course in Basic Mathematics	Economics (UG/PG), B.Sc. (C.S.) Engineering and Technology (UG), Science (Physics-UG)

B.A./B.Sc. II										
PROGRAMME		$\underset{\text { (15Weeks) }}{\text { SEMESTER }}$	PAPER	领	PERIO DS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
	$\underset{y}{\underset{y}{\mid c}}$	$\begin{aligned} & \frac{1}{1} \\ & \frac{1}{1} \end{aligned}$	Paper-1	5	5	$5 \times 15=75$	Real Analysis Functions of several variables and Partial Differential Equations Part A: Real Analysis Part B: Functions of several variables and Partial Differential Equations	Part A Unit I (8) Unit II (8) Unit III (7) Unit IV (7) Unit V (7) Part B Unit VI (8) Unit VII (8) Unit VIII (7) Unit IX (8) Unit X (7)	Diploma in Mathematics	Engg. And Tech.(UG), Economics (UG/PG), B.Sc.(C.S.)
	豆	$\sum_{i=1}^{\infty}$	Paper-2	5	5	$5 \times 15=75$	(i) Mathematical Methods Graph Theory Part A: Mathematical Methods Part B: Graph Theory	Part A Unit I (8) Unit II (10) Unit III (10) Unit IV (9) Part B Unit V (10) Unit VI (10) Unit VII (9) Unit VIII (9)	Diploma in Mathematics	Engg. and Tech.(UG), BCA, B.Sc.(C.S.)

	$\frac{\underset{y}{x}}{\underset{y}{x}}$	$\begin{aligned} & \underset{1}{1} \\ & \underset{y}{\|r\|} \end{aligned}$	Paper-2	5	5	$5 \times 15=75$	(ii)Number Theory $\&$RelativityPart A: NumberTheory	Part A Unit I (16) Unit II (11) Unit III (12) Part B Unit IV (14) Unit V (12) Unit VI (10)	Diploma in Mathematics	Engg. and Tech. (UG), BCA, B.Sc. (C.S.)
	尝	$\sum_{\substack{c}}^{\substack{c}}$	Paper-2	5	5	$5 \times 15=75$	(iii)Numerical Analysis $\&$ Operations Research Part A: Numerical Analysis	Part A Unit I (9) Unit II (9) Unit III (10) Unit IV (10) Unit V (9) Part B Unit VI (16) Unit VII (12)	Diploma in Mathematics	Engg. and Tech. (UG), Economics(U G/PG), BBA/BCA, B.Sc.(C.S.)
DEGREE IN MATHEMATICS	艺		Paper-1	5	5	$5 \times 15=75$	Complex Analysis Mechanics Part A: Complex Analysis Part B: Mechanics	Part A Unit I (9) Unit II (9) Unit III (10) Unit IV (9) Part B Unit V (10) Unit VI (10) Unit VII (9) Unit VIII (9)	Diploma in Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)

			Paper-2		5	$5 \times 15=75$	Linear Algebra Metric Spaces Part A: Linear Algebra Part B: Metric Spaces	Part	Diploma in Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)
				5						
								Unit I (10)		
								Unit II (9)		
								Unit III (9)		
								Unit III (9)		
								Unit IV (9)		
								Unit V (9)		
								Part B		
								Unit VI (6)		
								Unit VII (11)		
								Unit VIII (12)		
						tcome/Pro	ramme Specific	tcome		

Programme Outcome:

PO1: It is to give in-depth knowledge of geometry, algebra, calculus, differential equations and several other branches of pure and applied mathematics. This also leads to study the related areas such as computer science and other allied subjects.
PO2: The skills and knowledge gained in this program will be helpful for modeling and solving of real life problems.
PO3: Students will become employable in various government and private sector.
PO4: The completing this programme develop enhanced quantitative skills and pursuing higher mathematics and research as well.
PO5: The completion of this programme will enable the learner to use appropriate digital programmes and softwares to solve various mathematical problems.

Programme Specific Outcome:

PSO1: Student should be able to think in a critical manner and develop problem solving skills.
PSO2: Students should be able to recall basic facts about mathematics and display knowledge of conventions such as notations, terminology etc.
PSO3: Students are able to formulate and develop mathematical arguments in a logical manner.
PSO4: Students are motivate and prepare for research studies in mathematics and related fields.
PSO5: Student should be able to apply their skills and knowledge in various fields of studies including, science, engineering, commerce and management etc.

B.A./B.Sc. I (MATHEMATICS)

Detailed Syllabus For

CERTIFICATE
COURSE IN
BASIC MATHEMATICS

B.A. / B.Sc. I (SEMESTER-I) PAPER-I

Matrices, Trigonometry and Differential Calculus

Part-B Trigonometry		
Unit	Topics	No. of Lectures
IV	Trigonometric or circular and hyperbolic function of complex variable together with their inverses, De Moivre's Theorem and its applications, Euler's theorem, relation between trigonometric and hyperbolic function, Exponential function of a complex variable, Logarithms of complex variable, Properties of logarithmic function, Separation into real and imaginary parts	6
V	Gregory's series, Value of π by different series, Summation of Trigonometric series by $\mathrm{C}+\mathrm{iS}$ method based on Arithmetic Progression, Geometric Progression, Logarithms and Binomial expansions, Summation of Trigonometric series by difference method.	6

| \quad Part-C |
| :--- | :--- | :--- | :--- | :--- |

B.A./ B.Sc. I (SEMESTER-I) Paper-II

Practical

B.A. / B.Sc. I (SEMESTER-II) PAPER - I Integral calculus and Vector Analysis

PART-A		
Integral Calculus		
Unit	Topics	No of Lectures
I	Integral as a limit of sum, Properties of Definite integrals, Fundamental theorem of integral calculus, Summation of series by integration, Infinite integrals, Differentiation and integration under the integral sign.	12
II	Beta function, Properties and various forms, Gamma function, Recurrence formula and other relations, Relation between Beta and Gamma function, Evaluation of integrals using Beta and Gamma functions.	11
III	Double integrals, Repeated integrals, Evaluation of Double integrals, Double integral in polar coordinates, Change of variables, Change of order of integration in Double integrals, Triple integrals, Evaluation of Triple integrals, Drichlet's theorem and its Liovelle's extension.	12
IV	Area bounded by curves (quadrature), Rectification (length of curves), Volumes and Surfaces of Solids of revolution.	11

PART- B

Vector Analysis						
Unit	Topics	No. of Lectures				
V	Triple product, Reciprocal vectors, Product of four vectors, General equation of a Plane, Normal and Intercept forms, Two sides of a plane, Length of perpendicular from a point to a plane, Angle between two planes, System of planes.	$\mathbf{1 1}$				
VI	Direction Cosines and Direction ratios of a line, Projection on a straight line, Equation of a line, Symmetrical and unsymmetrical forms, Angle between a line and a plane, Coplanar lines, Lines of shortest distance, Length of perpendicular from a point to a line, Intersection of three planes, Transformation of coordinates.	$\mathbf{1 2}$				
VII	Ordinary differentiation of vectors, Velocity and Acceleration, Differential operator-Del, Gradient, Divergence and Curl.	$\mathbf{1 1}$				
VIII	Line, Surface and volume integrals, Simple applications of Gauss divergence theorem, Green's theorem and Stokes theorem (without proof).	$\mathbf{1 0}$				

B.A./B.Sc. II (MATHEMATICS)

Detailed Syllabus For DIPLOMA IN MATHEMATICS

B.A./B.Sc. II (SEMESTER-III) PAPER-I Group Theory and Analytical Geometry

B.A./B.Sc. II (SEMESTER-IV) PAPER-I Ordinary Differential Equations and Ring Theory

Programme: Diploma Class: B.A./B.Sc.		Year: Second	Semester: Fourth	
Subject: Mathematics				
Course Code: UGMAT401T		Course Title: Ordinary Differential Equations and Ring Theory		
Course outcomes: CO1: The objective of this course is to familiarize the students with various methods of solving differential equations of first and second order and to have qualitative applications. CO2: A student doing this course is able to solve differential equations and is able to model problems in nature using ordinary differential equations. After completing this course, a student will be able to take more courses on wave equation, heat equation, diffusion equation, gas dynamics, nonlinear evolution equation etc. CO3: Ring theory is one of the building areas of modern algebra. Objective of this course is to introduce students to basic concepts of Ring, Integral domain and other structures with their properties. This course will lead the student to basic course in advanced mathematics and Algebra.				
Credits: 6		Core Compulsory/Elective		
Max. Marks: 25+75		Min. Passing Marks:		
Total No. of Lectures - Tutorials-Practical (in hours per week): L-T-P:6-0-0				
Part-A Ordinary Differential Equations				
Unit			Topics	No. of Lectures
I	Introduction of Differential equations, Order and Degree of Differential Equations, Complete primitive (general solution, particular solution and singular solutions), Existence and uniqueness of the solution $d y / d x=f(x, y)$.			12
II	Differential equations of first order and first degree, Separation of variables, Homogeneous linear Equations, Exact Equations, Integrating Factor, Linear Equation, Equation of First order but not of first degree, Various methods of solution, Clairaut's form, Singular solutions, Trajectory, Orthogonal Trajectory, Self-Orthogonal family of Curves.			11
III	Linear differential equations with constant coefficients, Complementary function, Particular integral, Working rule for finding solution of linear differential equations with constant coefficients, Homogeneous linear equations or Cauchy-Euler equations.			11
IV	Simultaneous differential equations, Differential equations of the form $d x / P=d y / Q=d z / R$ where P, Q, R are functions of x, y, z. Exact differential equations, Total differential equations, Series solutions of differential equations, Linear differential equations of second order with variable coefficients, Initial and boundary value problems.			11

B.A./B.Sc. III (MATHEMATICS)

Detailed Syllabus For DEGREE IN MATHEMATICS

B.A./B.Sc. III (SEMESTER-V) PAPER-I Real Analysis, Functions of several variables and Partial Differential Equations

PART-B							
Unit	Functions of several variables and Partial Differential Equations						
VI	Functions of several variables: Limit, continuity and differentiability of functions of several variables.	No. of Lectures					

B.A./B.Sc. III (SEMESTER-V) PAPER-II (i) Mathematical Methods and Graph Theory

VII	Operation of graph circuit, Path and circuits, Eulerian circuits, Hamiltonian path and cycles, Adjacency matrix, Weighted graph, Travelling salesman problem, shortest path, Dijkstra's algorithm.	9
VIII	Tree, Binary and Spanning trees, Coloring, Color problems, Vertex coloring and important properties.	9
Suggested Readings (Part-A Mathematical Methods): 1. Murry R. Spiegal: Laplace Transform (SCHAUM Outline Series), McGraw-Hill. 2. J. F. James: A student's guide to Fourier transforms, Cambridge University Press. 3. Ronald N. Bracewell: The Fourier transforms and its applications, Mcgraw Hill. 4. J. H. Davis: Methods of Applied Mathematics with a MATLAB Overview, Birkhäuser, Inc.,Boston, MA, 2004. 5. Suggested digital platform: NPTEL/SWAYAM/MOOCs		
Suggested Readings (Part-B Graph Theory): 1. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Dover Publications, 2017. 2. Douglas B West, Introduction to Graph Theory, Pearson, 2018. 3. Santanu Saha Ray, Graph Theory with Algorithms and Its Applications: In Applied Science and Technology, Springer India, 2012. 4. Suggested digital platform: NPTEL/SWAYAM/MOOCs		
This course can be opted as an elective by the students of following subjects: Engg. and Tech.(UG), BCA, B.Sc.(C.S.)		
Suggested Continuous Evaluation Methods: Max. Marks: 25		
S. No	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests	5
3	Presentation	5
4	Assignment	5
Course prerequisites: To study this course, a student must have Diploma in Mathematics.		
Suggested equivalent online courses:		
Further Suggestions:		

B.A./B.Sc. III (SEMESTER-V) PAPER-II (ii) Number Theory and Relativity

Suggested Readings (Part-A Number Theory):	
1. G. H. Hardy and E. M. Wright: Introduction to the theory of numbers, Oxford University Press, 4th Edition.	
2. D. M. Burton: Elementary Number Theory, 6th Edition, Tata McGraw Hill.	
3. Thomas Koshy: Elementary Number Theory with Applications, Academic Press, 2nd Edition.	
4. Kenneth H. Rosen: Elementary Number Theory and its Applications, Addison-Wesley Publishing Company, 1986.	
5. Suggested digital platform: NPTEL/SWAYAM/MOOCs	
Suggested Readings (Part-B Relativity):	
1. D. F. Lawden: An Introduction to tensor calculus and relativity.	
2. J. V. Narlikar: General relativity and cosmology.	
3. R. H. Good: Basic concept of relativity, 1978.	
4. A. S. Eddington: Mathematical theory of relativity, 1981.	
5. Suggested digital platform: NPTEL/SWAYAM/MOOCs	
This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc. (C.S.)	
Suggested Continuous Evaluation Methods: Max. Marks: 25	
S. No	
1	Class Tests
2	Online Quizzes/Objective Tests
3	Presentation
4	Assignment
Course prerequisites: To study this course, a student must have Diploma in Mathematics.	
Suggested equivalent online courses:	
Further	uggestions:

B.A./B.Sc. III (SEMESTER-V) PAPER-II (iii) Numerical Analysis and Operations Research

B.A./B.Sc. III (SEMESTER-VI) PAPER-I Complex Analysis and Mechanics

PART-B Mechanics							
Unit	Topic	No. of Lectures					
\mathbf{V}	Rectilinear motion: Newton's Laws of Motion, velocity and acceleration, motion under constant acceleration, motion under inverse square law, rectilinear motion with variable acceleration, Simple Harmonic Motion.	$\mathbf{1 0}$					

VI	Kinematics in two dimension: Angular velocity and angular acceleration, Components of velocity and acceleration along coordinate axes, Radial and transverse components of velocity and acceleration, tangential and normal components of velocity and acceleration.	10
VII	Motion in resisting medium, constrained motion and Central orbits: Terminal Velocity, Motion in resisting medium in a straight line, Motion on vertical circle, Cycloidal motion, Central Force, Central orbit, intrinsic equation, Pedal form, apse and apsidal distance.	9
VIII	Statics: Coplanar Forces, Equilibrium of forces in three dimensions, Common catenary, Catenary of uniform strength, Virtual work.	9
Suggested Readings (Part-A Complex Analysis): 1. J. B. Conway: Functions of One Complex Variable, Narosa Publishing House, 1980. 2. E. T. Copson: Complex Variables, Oxford University Press. 3. L. V. Ahlfors: Complex Analysis, McGraw-Hill, 1977. 4. D. Sarason: Complex Function Theory, Hindustan Book Agency, Delhi, 1994.. 5. Suggested digital platform: NPTEL/SWAYAM/MOOCs Suggested Readings (Part-B Mechanics) : 1. M. Ray: A Textbook on Dynamics, S. Chand. 2. M. Ray: A Textbook on Statics, S. Chand. 3. A. S. Ramsay: Dynamics, Cambridge University Press. 4. S. L. Loney: Dynamics of a particle and of rigid bodies, Cambridge University Press. 5. Suggested digital platform: NPTEL/SWAYAM/MOOCs		
This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)		
Suggested Continuous Evaluation Methods: Max. Marks: 25		
S. No	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests	5
3	Presentation	5
4	Assignment	5
Course prerequisites: To study this course, a student must have Diploma in Mathematics.		
Suggested equivalent online courses:		
Further Suggestions:		

B.A./B.Sc. III (SEMESTER-VI) PAPER-II Linear Algebra and Metric Spaces

VI	Definition and examples of metric space, pseudo metric, discrete and usual metric space, diameter of a set	6
VII	Open and closed sets in a metric space, Interior point, Limit point, Adherent point, Closed set, Neighbourhood, Closure of a set, Interior of a set, Bolzano-Weirstrass theorem, Complete metric space, Cauchy sequence, Convergent sequence, Bounded Sequence	11
VIII	Separated sets, Connected and disconnected sets, Continuity and connectedness, Compactness, Compactness and uniform continuity, Continuity and Uniform continuity in a metric space.	12
Suggested Readings (Part-A Linear Algebra): 1. Hadley: Linear Algebra. 2. Hoffman and Kunze: Linear Algebra, Prentice Hall of India, New Delhi, 1972. 3. H. Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994. 4. K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India. 5. S. Lang: Linear Algebra, Springer. 6. Suggested digital platform: NPTEL/SWAYAM/MOOCs. Suggested Readings (Part-B Metric Spaces): 1. Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. 2. Satish Shirali \& H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 3. S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 4. Suggested digital platform: NPTEL/SWAYAM/MOOCs.		
This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)		
Suggested Continuous Evaluation Methods: Max. Marks: 25		
S. No	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests	5
3	Presentation	5
4	Assignment	5
Course prerequisites: To study this course, a student must have Diploma in Mathematics.		
Suggested equivalent online courses:		
Further Suggestions:		

